
What do we do when we do
The Hour of Code?

With the collaboration of:

Rodrigo Fábrega Lacoa Mónica Retamal Anita Saez Jorge Fábrega Lacoa Andrea Fuentealba Esteban Carreño

Authors:
*Rodrigo Fábrega Lacoa, Ph.D In Theory and Educational Policy of The Pennsylvania State University, Manager of Ucorp; Mónica
Retamal, journalist from Diego Portales University, Manager of Ky Technology and Director of Kodea; Anita Sáez, Special Education
Teacher from Metropolitan University of Educational Sciences; Jorge Fábrega Lacoa, Ph.D on Public Policy from Chicago University
and professor at the Research Centre of Social Complexity from UDD; Andrea Fuentealba Matamala, Teacher and Kindergarden
Educator, Master in Emotional Education from Mayor University; Esteban Carreño, Policy and International Affairs Analyst, Santiago
University.

This report is part of 2016 Hour of Code Project, developed by the Kodea Foundation and Ucorp together with the Deputy Secretary
of Economy and Small Sized Companies from Chile. We have prepared this report with the collaboration of the Center for Research
on Social Complexity of the UDD.

Santiago, December 2016.

What do we do when we do
The Hour of Code?

2

Introduction
The Hour of Code has expanded rapidly and successfully around the
world. According to the creators, Code.org, 98% of the people who
have participated in the Hour of Code declare to have had a good
experience; 85% of those who begin to study computing, claim that
the HoC encouraged them to teach programming. Half of the teachers
who took the initiative to their establishments, indicated that they will
continue to teach computer science for more than one hour. The global
campaign has succeeded in encouraging 1 in 5 teachers to begin
teaching computer science.

Programming in a computer language is not easy. Like any
other intellectual ability (calculation, statistical analysis, reading
comprehension, translation, etc.), it presents important challenges and
effort. By introducing programming through a series of short games,
the HoC initiative has been able to introduce and effectively involve
hundreds of children, young people, and adults, in this fascinating
field.

In Chile, we joined the HoC massively, and there are more and more
interested teachers and students, being Chile, on its 2016 version, one
of the countries with the highest participation worldwide. To a great
extent, the important expansion of the initiative is due to the fact that
the teachers identified educational value in the activity, which raised
two recurring questions in the workshops we have developed: 1) In
what way does this help to develop higher cognitive skills? 2) What can
we expect from the performance of our students?

These were reformulated into a single question: What do we do when
we do HoC? Here we present a first approximation on the joint work
together with teachers from Chile, aiming at positioning the use of
programming languages as a fundamental pedagogical tool in the
classroom, now that we are entering a knowledge economy.

The text will be structured in two parts: the first will present an
introduction to the theoretical framework, linking the teaching of
programming to cognitive skills, and how these are expressed in the
HoC. In the second part, the case of HoC in 4 educational establishments
in Panquehue district - Chile, will be shown which served as a case
study in the implementation.

3

For more information visit the page of the group of interest for programming psychology: http://ppig.org/1

The relationship between programming and cognition has received attention from several fields. One of the first steps in this
direction is found in Programming Psychology (PP), which:

“It is an interdisciplinary area that covers research in the cognition of programmers; tools and methods for programming
related activities; and computer education. The origins of the PP date back to the late 1970s and early 1980s when researchers
realized that programming tools and technologies should not be evaluated based only on their computational power but also
on their usability from the human point of view, that is, based on their cognitive effects “(Sajaniemi, 2008, p.4).

This turn-from-the-user-side, is due to the various characteristics and mental abilities applied in the process of programming.
For example: planning, reasoning, problem solving, the ability to generate and formalize abstractions, among others; factors
that, at the same time, are the main obstacles of its learning (Insuasti, 2016). In this scenario, a line of research proposed
the idea of programming as an instrument of cognitive development (Pea & Kurland, 1984, Liao & Bright, 1991, Jonassen &
Reeves, 1996, Román, et al., 2016, among others), finding favorable results, which have encouraged further research in these
areas. (Ahmed, 1992, Guzdial, 2004); (Scherer, 2016).

In this way, in the late 1990s, the thesis of programming and its positive impact on cognitive development was a consolidated
topic (Fábrega, et al., 2016). As a result, entering the 21st century, a theoretical line, originally proposed by Pappert 50 years
ago, will embrace this relationship in a more holistic way, something known today as “Computational Thinking” defined by
Wing (2008) as:

“Programming is not only a fundamental skill in computer science and a key tool to support the cognitive tasks involved in
computational thinking, but also a demonstration of computational competencies as well. Programming allows the application
of both computational thinking skills, explicit and implicit, incorporating challenges that require high-order thinking (...) The
distinctive skills of computational thinking are not about how to program a computer, but rather a cognitive approach to solve
problems using abstraction, decomposition, algorithms, and iterative processes “(cited by Sung, et al., 2016, pp. 382-383).

The conceptualization around Computational Thinking has opened new questions on how to understand the connection
between programming and cognition and its approach from the educational point of view (Lu & Fletcher, 2009). In order to
identify the key competences required by computational thinking, Ambrosio et al., through a study carried out with computer
and computer students from the University of Minho in Portugal, conclude that:

“Students’ computational skills at the level of academic learning seem to require more of their logical-deductive reasoning
skills (inferring and applying or generalizing relationships) and a holistic or simultaneous organization of information (spatial
organization). The simple attention or calculation tasks do not seem to be relevant in differentiating students’ performance in
computer science “(Ambrosio, et al., 2014, p.31).

What do we do when we do The Hour of Code?
1) Introduction to a cognitive perspective.

1

4

On the other hand; Park, Song and Kim (2015), in a controlled
experiment analyzing an electroencephalogram of the frontal
lobe, demonstrated that the computational thinking has a
positive effect in reducing the cognitive load in the students,
this is the excess of cognitive resources required to perform a
task. According to the researchers, this would happen because

“Education in [Computational Thinking] can help students
focus on problem solving in a more strategic way ... by
learning problem-solving strategies repeatedly, when students
encounter complex problem situations, the cognitive system
can homologue solutions “(Park, et al., 2015, p.42).

From its early stages, computing has been deep-rooted in human
cognition, and even more so in the so-called “Cognitive Era”,
where some computational devices would be able to homologate
certain capacities of the human, to understand the environment
that surrounds them and even to make some routine decisions in
an autonomous way (Kelly, 2015). This has motivated the search
for a greater understanding of human cognition itself: learning as
we learn or thinking as we think, that is why cognitive skills are
a constituent element of Computer Programming and Science,
and today it is urgent to be considered from the pedagogical
point of view and that this is not possible without the help of
teachers. And we divide it so as to offer the teacher a guide.

2) Mediation and cognitive abilities
map.

So far, we have seen an introduction of the relationship between
programming and cognition. It is clear that the didactics that
incorporates programming, offers a space for the development
of cognitive abilities in people, teachers as mediators will be
a fundamental part of their development and implementation
(Ferreiro & Vizoso, 2008). In this regard, Salomon and Perkins
conclude that the model of transferring cognitive abilities
offered by programming, occurs “when the path is ‘forced’ by
an instruction that directly and vigorously helps the students

to think about programming at an abstract level, in terms of the
generic strategies involved “(Salomon & Perkins, 1987, p. 163.
Fessakis and colleagues who, beside of validating the use of
children-oriented programming resources for the development
of cognitive skills, such as problem solving, reinforce the role
of the teacher or guide in the involvement of the activities
(Fessakis, et al., 2013)

So for the Hour of Code, from the perspective of the results,
the important thing is to know if the challenge was solved or
not; how many lines of programming were made, among others
things, from the point of view of the educational process, the
HoC is interested as a pedagogical resource, both to identify the
possibilities of change in the learning of its participants, and to
provide feedback to the mediator or teacher of how to understand
and manage what underlies a task and its cognitive map, that
is: to analyze each of the challenges from its modality, content,
mental operations, cognitive functions, level of abstraction,
level of complexity, among others, so that the teacher is
able to recognize the levels of change that their students can
experience in learning and the necessities that they can present.
On the other hand, mediation in this game is an opportunity for
participants to generate resilience through reiterative trial-error,
where experience of error can further lead to meta-cognition
exercises i.e. How am I thinking? What am I doing wrong? How
did I discover the solution?

There are different games in www.horadelcodigo.cl. For this
work, we studied the HoC Angry Bird (HoC-AB). It is a game
that teaches the basics of Computer Science through a visual
programming language. This consists of 20 tasks, graduated in
increasing complexity in relation to the number of operations
that progressively deploys, and that must be controlled, making
of the game itself a mental challenge.

We reviewed each of the 20 challenges of the Angry Birds tutorial
and divided it so as to offer the teacher, a guide of the processes
involved.

5

 Own translation
Angry Birds is a series of videogames for computers and mobiles launched in 2009. For more information see:
Https://en.wikipedia.org/wiki/Angry_Birds.

2
3

2

3

The HoC-AB game operates at a low to medium abstraction level, since the required
mental transformations and operations are based on different representations on an
animated pictorial platform, which requires numerical, verbal, figurative and symbolic
processing. Finally, the mental process is verified through the concrete execution of the
routes according to the orders introduced by the students.

Complexity is understood as the amount of information units that are needed to
operate and the degree of novelty that can be presented to the student when they are
solving the challenges. We could define it from a low to a very high level.

The aspects of abstraction and complexity directly affect the changes and flexibility
that students can reach in the cognitive level on the development of these activities.
It is for this reason that mediation should be essentially oriented so that those who
learn, record the data in an orderly and systematic manner, and categorize them
to achieve greater control. This is because they must simultaneously use different
modalities, coordinate instructions, and project them topologically in the space of
the labyrinth.

Level of abstraction

Level of Complexity

The modality specifies the language in which the tasks are presented, in this case, it corresponds mainly
to a numeric, pictorial and verbal language. Numerical related to numbering steps by a linear count, and
cardinality, not exceeding ten, and in the sequence of play, up to twenty. Verbal, because it is necessary to read
commands and instructions. Finally, pictorial, because of the animation of the labyrinth itself. The use of 3
simultaneous codes will activate the flexibility for the ability to analyze and decode information. A mediation
instance for non-readers is still the global reading, which associates the word with a symbol / command:
forward, rotate, repeat (iterate), logical conditionals (if [condition] then [action]).

Modality

6

The main operations and in increasing order of complexity required by the task refer to:

 Comparison, where the relations of similarities and differences between the labyrinth itself and the commands that are written
to complete the route, must be determined permanently in the game. This operation is activated by verifying step v/s the path v/s
command.

 Coding is a way of relating languages with their corresponding signs. This enables flexibility and synthesis by internalizing
the numeric, verbal, pictorial and figurative signs, which are synonymous with the work of syntax and semantics of text-based
programming.

 The use of virtual relationships activates this mental capacity, which consists in seeing and establishing relations between external
stimuli; relationships that do not exist in reality, but only potentially; this is what happens when imagining and creating a formula
of the trajectory, necessary to reach the end of the labyrinth

 Transitive reasoning is the ability to order, compare, and describe a relationship in order to reach to a conclusion. It is a property
of logic. Thus, in HoC-AB, the student, when elaborating a sequence through the comparison and the relation between commands,
is able to draw a favorable conclusion or not, to reach the objective of the labyrinth.

 Hypothetical reasoning is the mental ability to make inferences and predictions from known facts, and the laws that relate them. In
the HoC-AB, when selecting a command, the brain projects or visualizes a potential response in the construction of the trajectory.

Capabilities or Mental Operations

Cognitive functions are the steps that underlie mental abilities or operations. According to the development
phase of the response, there are mainly:

-INPUT PHASE: it is important to carefully explore the data to be used to operate, among which we find: words,
drawings, positions, numbering, commands. Then it is important to manage student impulsiveness to control
trial-error procedures, avoiding frustration and cognitive overload, while promoting strategic reasoning.

The functions referred to the use of verbal tools, should be ordered and classified, mainly those of topological-
spatial type. Students should have a space, prior to the start of the game, to recognize, sort, classify, and
internalize the information they will use. Consequently, the HoC requires a continuous and simultaneous
processing of different information, for which - if properly identified and categorized - it will allow a better
handling of symbols, positions, assessments, directions, simultaneously. It is here where strategies of targeting,
exploration, registration and order are necessary.

Cognitive functions

7

-PREPARATION PHASE: At this stage or level, it is important to encourage the autonomy of comparative
behavior, so that the identification and use of criteria allow the student to expand the internalization skills
required by this game, controlling different information. For this, it is necessary to distinguish the relevant
aspects from the less relevant ones. It could be that more concrete children tend to focus more on the animation
of the labyrinth than on scheduling. Retro-stimulation should then be granted in relation to the definition of the
task of labyrinths, that is, programming to perform the necessary paths or trajectories.

The parameter of complexity gives to this labyrinth task a progressive level, and for this it requires an internalized
behavior. That is, to achieve the highest mental representation, to plan and establish the necessary logical
relationships. The internalized behavior is enhanced using verbal tools and symbols. One strategy is to suspend,
during the planning of the trajectory, the visual stimuli of the screen, so they do the planning in a verbal way.

Another function of the elaboration phase refers to the development of the planned behavior required by the HoC.
This is related to impulsivity. The steps must be projected according to a certain degree of detail, and ordered
according to the temporal sequence. On the other hand, they must be evaluated based on the investment, the
feasibility, the economy, among other important criteria for the student.

Finally, the cognitive function of elaboration, called summative behavior, will affect the planning visualized in the
necessary steps and categorized to proceed to formulate a response in the form of a program.

-OUTPUT PHASE: One of the cognitive functions is the control of impulsivity. Generally, it can happen, when
the support of verbal resources is subtracted when emitting a plan of the trajectory, relegating it to the intuition.
Another aspect is the obstruction that the student can experience when they don’t find a solution, or when they
don’t receive feedback from the game, tending to try and try possible answers, but without a logical basis, away
from the objective of the challenge, which is to develop computational thinking and programming.

Another cognitive function of the elaboration is the projection of virtual relationships, that is, those that have
been constructed and elaborated, but that must be projected to give a precise answer. This may involve the
restructuring of a given set of instructions, typical during the execution, in addition it must understand the error
that can be experienced, and the step-by-step review of the planning.

Chip coins for each labyrinth
Each labyrinth has a chip coin that explains the studied variables, in the same
way that they offer the solution of each one of the challenges.

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

As we have seen, HoC is not just about programming, there is also an
opportunity for our students to develop their higher cognitive skills. As
part of the Hour of Code campaign, a series of preparations and workshops
were held. Teachers from different parts of the country asked questions
about this initiative, interested in being able to effectively conduct the
HoC with educational value in their schools. Some of their concerns
were: How are we going to give the instructions? How many programs do
they manage to develop and for how long? Is there a difference between
men and women? What special support should we give to the less
advanced students in math? What kind of questions do the students ask?

In the region of Panquehue, and coordinated with the local City Hall,
we invited 204 students from 4th to 8th grade, to develop the HoC in a
computer lab. Although the initiative is called Hour of Code, teachers are
in charge of establishing the time for students to develop the educational
experience by solving the challenges. For the purpose of this study,
participants were given 30 minutes. Our focus is not to measure how
many were able to finish, but the process of doing the HoC within a
certain amount of time that allows concentration and interest.

Making the Hour of Code

29

How are we going to give
instructions?
First, we show a 4-minute video tutorial explaining how
to proceed and what the goal is. While for the 6th, 7th
and 8th grade students the instructions presented in
the tutorial video are sufficient, some 4th and 5th grade
students need to review, even make the first 2 out of the
20 programs so that students understand what they have
to do. Students start making questions 10 minutes after
they have started working.

There is no defined time to develop the Hour of Code, considering that the important thing is not only to complete the 20
labyrinths but, the process that means solving them. Figure 1, shows the average number of labyrinths solved according to
each level. The children of 7th and 8th grades, show a greater number of labyrinths solved, with an average of 15.

Graph 1
Average number of labyrinths solved per level

How many programs do they manage to develop and
how long does it take to manage them?

30

There were no significant difference between men and women regarding their participation in the HoC; they show similar
interest, interaction and achievement. For example, as shown in figure 2, in 4th grade, women (W) have greater variability
of results. They are the ones that made the most progress, but also the ones that did less programs. In 5th grade, there are
members of both groups who managed to reach program 17. In 6th grade the behavior is similar, the most advanced ones
completed 18 challenges, except for a student who reached 20. In the 7th grade, there were no women participating. In 8th
grade, we began to see gender differences, where men showed slightly better results.

Performance in math, a subject commonly associated with programming skills, is not directly related to the number of labyrinths
solved during the same amount of time, as seen in figure 3. In the X axis, are the math grades obtained by students during the first
semester of 2016. In Y axis, are the number of solved labyrinths, from 1 to 20. The red lines intersect the X axis in the minimum
passing grade, while they intersect the Y axis in the middle of the labyrinths possible to solve. In 30 minutes, almost all students
managed to solve more than half of the labyrinths, even those with a grade below 4.0 in math. There are also students who have had
a poor performance in the subject and yet managed to solve more challenges than the average participants.

Is there any difference between men and women?

What special support should we give to math’s
less advanced students?

Graph 2
Number of programs solved by level and gender

31

What kind of questions do the students ask?

Graph 3
Grades in math vs. the number of programs solved

Table 1
Main students’ questions

32

This more qualitative dimension of the dynamics, shows the centrality that the teacher acquires in the classroom, as a mediator
that allows to direct and to channel the understanding, and mental exercise of the student. For example, procedural questions, at
the command level “how do I make it turn? How do I make it turn left/right? How do I move forward? “, are instances to work the
capacity of spatial perception, and abstraction of steps.

The same is unfolded in logical type questions such as “how can I make it repeat itself? Why does it restart? “, Which work the
concept of iteration (or loop) proper of programming, that require a guide work on the thinking process, or mental models generated
by the student.

Finally, it also shows a space to mediate frustration and resilience. Many students say “I can´t, I have done it several times
Something is wrong, I have tried a lot of times ... “, this is something common in programming environments, and it requires
great concentration, attention, and patience abilities, the position of the mediator here is key in leading the students to rethink their
actions, and understand what and how it is operating to reach such an outcome, and to re-focus them on solving the problem.

Participating in the HoC is a good doorway to Computational Thinking and a tool of great educational value. Knowing how to
program is beneficial, on the one hand, because it provides the necessary elements to face the challenges of the Knowledge Society;
and on the other, because different studies have shown their relationship with the development of higher order cognitive abilities.
However, less attention has had the following question: What do we actually do when we program? A very important topic from the
point of view of teaching, and which answer we seek to approach through the HoC.

In the first part, we analyze what underlies the task of doing the HoC, the modality, the content, the mental operations, the cognitive
functions, the level of abstraction and the level of complexity that the students face. This aims at offering the teacher a guide to
recognize the levels of change that students can experience in learning and the requirements they can present to stimulate the
exercise of metacognition: How am I thinking? What am I doing wrong? How did I discover the solution?

In the second part, through a case study, we showed that HoC is an adequate tool to develop workshops for students of different
levels; that there are no gender differences in performance before 8th grade, which is where you notice a slight advantage in favor
of men; that there are students with discrete performance in math and language subjects that achieve outstanding results in the
development of HoC; among other findings.

This study will serve as a basis for developing new researches that aim at preparing training workshops for teachers, who form the
HoC network of embassadors in Chile.

33

Conclusion

This graph shows that performance in math is also not a predictor of the results in the labyrinth game even for students of the PEI
(colored dots), because it is possible to find SIP exponents that manage to solve more labyrinths than some of their peers with
better math scores.

Annex Graph 2
Note in math vs. number of programs solved

Students of the Special Integration Program (SIP)

34

Annex

P-value>0,05 P-value>0,05

Annex Graph 1

This graph shows grades in math and language,
and performance in the labyrinth game. What
we can appreciate is that there is no causal
relationship between one element and another,
that is, better or worse grades in language or
math, do not explain the result in the game. This
is reflected in P-value, that due to a statistical
convention, it is said that if a p. Value is higher
than 0.05, the results or associations between
two or more variables are random.

Finally, the school effect does not generate a better link between grades and performance in the game, as shown in figure 4, in this,
it can be seen that even in schools where there are better students, with grades 6 or higher, they do not manage to complete more
labyrinths than their peers with the same scores in other schools. In addition, in the schools that have a better results in the number
of completed labyrinths, this indicator does not appear related to the performance in mathematics, as it is the case of establishments
1, 5, and 6.

Annex Graphic 4
Performance in mathematics and labyrinth by establishments

Annex Graphic 3
Note in math vs. Number of programs solved by man (orange) and women (blue) for both

Mathematics (left) and Language (right).

This graph reinforces the idea that
performance in math is not a predictor of
the ability to solve labyrinths. However,
there is a positive association between
language performance and labyrinths
when gender division is included,
benefiting women. That is, women who
have a good level of language tend to
have better results in solving labyrinths
(note that the value is less than 0.05, that
is, the result is not random), this may be
due to the fact that they are dedicated to
read the instructions before programming
the commands.

35

Ahmed, A., 1992. “Learning to Program and Its Transference to Students Cognition”, University of
Bahrain: ERIC.

Ambrosio, A., Almeida, L., Macedo, J. & Franco, A., 2014. “Exploring Core Cognitive Skills of
Computational Thinking”. In: B. Du Boulay & J. Good, eds. Psychology of Programming Interest Group
Annual Conference. Brighton: PPIG, pp. 25-35.

Cheryan, S., Ziegler, S., Montoya, A. & Jiang, L., 2016. “Why are Some STEM Fields More Gender
Balanced than Others?” Psychological Bulletin, pp. 1-36.

Fábrega, R., Fábrega, J. & Blair, A., 2016. “Enseñanza de Lenguajes de Programación en la Escuela: ¿Por
qué prestarle atención?”, Santiago de Chile: Telefónica.

Ferreiro, R. & Vizoso, E., 2008. “Una Condición Necesaria en el Empleo de las TICs en el Salón de
Clases: La Mediación Pedagógica”. Revista Posgrado y Sociedad, 8(2), pp. 72-88.

Fessakis, G., Gouli, E. & Mavroudi, E., 2013. “Problem solving by 5-6 years old kindergarten children
in a computer programming environment: A case study”. Computers & Education, Issue 63, pp. 87-97.

Guzdial, M., 2004. “Programming Environments for Novices”. In: S. Fincher & M. Petre, eds. Computer
Science Education Research. London: Routledge Falmer, pp. 127-154.

Insuasti, J., 2016. “Problemas de enseñanza y aprendizaje de los fundamentos de programación”. Revista
educación y desarrollo social, 10(2), pp. 234-246.

Jonassen, D. & Reeves, T., 1996. “Learning with Technology: Using Computers as Cognitive Tools”.
In: D. Jonassen, ed. Handbook of Research for Education Communications and Technology. New York:
Macmillian Library Reference, pp. 693-719.

Kelly, J., 2015. “Computing, cognition and the future of knowing. How humans and machines are forgin
a new age of understanding”, New York: IBM Global Services.

Liao, Y. & Bright, G., 1991. “Effects of Computer Programming on Cognitive Outcomes: A Meta-Analysis”.
Journal of Education Computing Research, 7(3), pp. 251-268.

Lu, J. & Fletcher, G., 2009. “Thinking about computational thinking”. In: ACM, ed. Proceedings of the
40th ACM technical symposium. New York: ACM Digital Library, pp. 260-264.

Olalekan, S., 2016. “Computer programming skill and gender difference: An empirical study”. American
Journal of Scientific and Industrial Research, 7(1), pp. 1-9.

Park, S., Song, K. & Kim, S., 2015. “EEF Analysis for Computational Thinking Based Education Effect
on the Learner’s Cognitive Load”. In: X. Zhuang, ed. Proceedings of the 14th International Conference on
Applied Computer and Applied Computational Science (ACACOS ‘15). Kuala Lumpur: Recent Advances
in Computer Science, pp. 38-43.

Bibliography

36

Patitsas, E., Berlin, J., Craig, M. & Easterbrook, S., 2016. “Evidence That Computer Science Grades
are Not Bimodal”. In: A. f. C. Machinery, ed. Proceedings of the 2016 ACM Conference on International
Computing Education Research. New York: International Computing Education Research, pp. 113-121.

Pea, R. & Kurland, D., 1984. “On The Cognitive Effects of Learning Computer Programming”. New Ideas
in Psychology, 2(2), pp. 137-168.

Román, M., Pérez, J. & Jiménez, C., 2016. “Which cognitive abilities underlie computational thinking?
Criterion validity of the Computational Thinking Test. Computers in Human Behavior, 30(14), pp. 1 - 14.

Sajaniemi, J., 2008. “Psychology of Programming: Looking Intro Programer’s Heads”. Human
Technology: An Interdisciplinary Journal on Humans in ICT Environments, 4(1), pp. 4-8.

Salomon, G. & Perkins, D., 1987. “Transfer of Cognitive Skills From Programming: When and How?”
Journal of Educational Computing Research, 3(2), pp. 149-169.

Scherer, R., 2016. “Learning from the Past- The Need for Empirical Evidence on the Transfer Effects of
Computer Porgramming Skills”. Frontiers in Psychology, 7(1390), pp. 1-4.

Sung, W. et al., 2016. “Incorporating Touch-Based Tablets into Classroom Activities: Fostering Children’s
Computational thinking through iPad Integrated Instruction”. In: D. Mentor, ed. Handbook of Research
on Mobile Learning in Contemporary Classrooms. Pennsylvania: Information Science Reference, pp.
378-406.

Wing, J., 2008. “Computational thinking and thinking about computing”. Philosophical Transactions of
The Royal Society, Issue 366, pp. 3717-3725.

Design and production Ucorp
Betsabé Pujol Romero

Bibliography

37

